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SUMMARY
Primates have evolved sophisticated, visually guided reaching behaviors for interacting with dynamic ob-
jects, such as insects, during foraging.1–5 Reaching control in dynamic natural conditions requires active pre-
diction of the target’s future position to compensate for visuo-motor processing delays and to enhance online
movement adjustments.6–12 Past reaching research in non-human primates mainly focused on seated sub-
jects engaged in repeated ballistic armmovements to either stationary targets or targets that instantaneously
change position during themovement.13–17 However, those approaches impose task constraints that limit the
natural dynamics of reaching. A recent field study inmarmosetmonkeys highlights predictive aspects of visu-
ally guided reaching during insect prey capture among wild marmoset monkeys.5 To examine the comple-
mentary dynamics of similar natural behavior within a laboratory context, we developed an ecologically moti-
vated, unrestrained reach-to-grasp task involving live crickets. We used multiple high-speed video cameras
to capture the movements of common marmosets (Callithrix jacchus) and crickets stereoscopically and
applied machine vision algorithms for marker-free object and hand tracking. Contrary to estimates under
traditional constrained reaching paradigms, we find that reaching for dynamic targets can operate at incred-
ibly short visuo-motor delays around 80 ms, rivaling the speeds that are typical of the oculomotor systems
during closed-loop visual pursuit.18 Multivariate linear regression modeling of the kinematic relationships
between the hand and cricket velocity revealed that predictions of the expected future location can compen-
sate for visuo-motor delays during fast reaching. These results suggest a critical role of visual prediction
facilitating online movement adjustments for dynamic prey.
RESULTS AND DISCUSSION

Tracking of marmoset reaches
Primates exhibit a sophisticated repertoire of visually guided

reaching behaviors that enable them to interact with objects

and navigate arboreal environments. Although the motor as-

pects of these reaching movements are largely conserved

across mammalian species, primates are unique in their integra-

tion of visual information to guide reaching movements.19–23 A

recent study used video in the field to examine reach-to-grasp

movements for flying insects among wild marmoset monkeys.5

They found evidence to support an online active vision strategy

during prey capture in which the head angle of marmosets

actively tracked insects during reaching. However, the video res-

olution in the wild does not afford enough precision either to

measure visuo-motor delay or to test if themotor control strategy

exploits predictions of future target location to compensate

for processing delays. Here, we establish an ecologically moti-

vated reaching task within a laboratory setting using high-speed

video to test the kinematics of reach-to-grasp movements for

dynamic prey.

We used high-speed, multi-camera video and machine

learning methods to track marmoset reaches for live, moving
Curren
crickets. Reaching experiments were conducted by docking a

mobile video-recording platform to marmoset family cages

within the marmoset colony and recording reaches using 3

GoPro cameras (Figures 1A and 1B). Hands, fingers, crickets,

and the experimental apparatus were tracked from three

cameras using DeepLabCut24 and 3D position triangulated using

Anipose25 (Figures 1C–1G). DeepLabCut performance using the

labels illustrated in Figures 1C and 1D is quantified in Figure S1.

Althoughwewere able to reconstruct 3D trajectories of reaching,

most subsequent analyses focused on 2D tracking from the top-

view camera angle depicted in Figure 1F because crickets

mainly limited their motion to the horizontal plane during the

reaching tasks.

Marmoset reach-to-grasp dynamics
Earlier work in laboratory settings have shown that marmosets

are equally likely to prefer using their left or right hands in reach-

ing,26 and they typically employ a power grasp strategy to reach

items in which all fingers open in unison and close around the

target to press it within the palm of the hand, which has been

shown in marmoset27 and macaque.28,29 A key difference from

macaques is that marmosets do not use a precision grip. Old

World primates have opposable thumbs that allow them to grasp
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Figure 1. High-speed, multi-camera video

reconstructs reaching for dynamic prey

(A) A wheeled video platform allowed tests of in-

dividual marmosets from inside their housing in a

colony.

(B) Three GoPro cameras were calibrated around a

semi-circular reaching arena where a live cricket

was placed. Marmosets reached through a rect-

angular aperture to acquire crickets.

(C) Feature points were manually labeled in a

subset of video frames to train DeepLabCut. Hand

and cricket markers (*) were used for reaching

analyses and knuckle markers (^) for grasping

analyses.

(D) Arena markers were used to validate spatial

coordinates and correct for any post-calibration

camera movement.

(E–G) DeepLabCut labeling of synchronized frames

of video from three camera angles. DeepLabCut

tracked labeled points with a RMSE of �3 and

�7 pixels for the cricket and hand, respectively,

compared with �37 pixels for the size of the

marmoset wrist.

See also Figure S1.
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small objects between the thumb and fingers,30 whereas most

New World primates, including the marmoset, use a power

grasp.31 We found that marmosets in our experiments predom-

inantly employed a left or right single-handed (LH or RH) reach-

ing strategy akin to a pause and lunge approach utilized by

marmosets in the wild.5,32 This strategy may have been favored

due to the reaching aperture utilized in our setup, which pre-

vented marmosets from using their mouths or a two-handed

pounce (P) strategy. We recorded a total of 271 reaches for

live crickets (137 LH, 134 RH, and 10 P) from 10 marmosets.

Gross quantification of these reaches through a left-handedness

index (LHI) (LH reaches/total reaches) indicates an evenly split

mixed hand preference over the population of reaches. Assess-

ing this quantification at the marmoset participant level shows

two marmosets with a strong right-handed preference (LHI =

0.31 and 0.04) and three marmosets with a strong left-handed

preference (0.83, 0.87, and 0.92), whereas the other 5 marmo-

sets had little preference (0.60, 0.68, 0.64, 0.66, 0.44, and

0.40). Of the total recorded set of 271 reaches for crickets, 78

reaches contained crickets that moved during or before the

reach, which were selected for subsequent analyses (see

STAR Methods for inclusion criteria).

Marmosets performed reach-to-grasp movements for moving

crickets using a power grasp to enclose crickets within their

hand at the end of the reach (Figure 2). In an individual reaching

trial, the opening of grasp aperture begins as hand velocity drops

with increasing proximity to target (Figures 2A–2C), which is

consistent with findings in previous NHP studies from both mar-

mosets and macaques.27–29 Finger separation distance was

calculated as the average of the distances between the index

finger and middle finger, and the middle finger and ring finger,
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using knuckle markers (Figure 2B, dark

blue points). For this reach, there is a clear

temporal order with the peak in hand

speed followed by an increase in finger
spread as the hand speed decreases (Figure 2C). This pattern

was typical of the population of reaches. A frontal view of a

typical reach (Figure S2) shows the fingers wrapping around

the cricket.

We used dimensionality reduction methods to further charac-

terize the grasping strategies employed in the population of rea-

ches. For each reach, a time series of finger spread distance was

calculated based on the knuckle markers. The distance values

were interpolated over a fixed number of time steps over the total

reach duration, with the reach start defined from the moment the

hand first entered the arena to the end being when the fingers

first began to close around the cricket. Principal component

analysis of these reach trials captured 69.1% of the variance

within the first two components.We found a continuumof points,

where each point corresponds to one time-normalized reach,

which extended along the first principal component as opposed

to discrete clusters (Figure 2D). To visualize the variations in

finger separation across the population of reaches, we per-

formed a k-means clustering and split the space into the best

fitting three clusters.

The power grasp strategy shows a temporal pattern of earlier

grasp opening for faster movements. Cluster 1 shows an early

finger spread after reach initiation, which continues throughout

the reach (Figure 2E1). By comparison, in cluster 2, the finger

spread initiates later during hand transport (Figure 2E2), and in

cluster 3, finger spread initiates only at the very end of the reach

(Figure 2E3). Plotting hand velocity time series for the same clus-

ters, we find higher and earlier peak velocities for cluster 1

compared with cluster 2, and likewise for clusters 2 and 3

(Figures 2F1–2F3). Thus, the timing of grasp opening varies

with reach speed. Video frames taken from an example reach



Figure 2. Hand aperture opens earlier with increasing hand speed in a power grasp

(A) Cropped video frames show a single reaching trial at two time points indicated by light and dark gray points.

(B) The hand position for the corresponding time points in (A) is shown from the top camera view. The underlying light blue trace shows the trajectory of the reach

from the central hand marker and the red traces indicates cricket motion.

(C) Within the example reach the speed of the hand (shown in black, left vertical scale) peaked and began to fall before the finger spread increased, depicted in

gray (right vertical scale).

(D) The finger spread over time was submitted to a cluster analysis (STARMethods) which revealed a continuum along the principal component axes that we split

into three clusters (green, purple, and orange) for visualization. The two outliers present in cluster 3 (yellow, at the bottom) were due to finger contact against the

retaining wall at the end of the reach.

(E) Finger separation peaked at longer delays in the reach for the three identified clusters when plotted over normalized time from reach start to cricket occlusion.

(F) The corresponding hand velocity traces for the same clusters reveal slower peak velocities correlating with later grasp opening.

(G–I) Three frames from an example reach to grasp for each of the clusters reveals a power grasp enclosing the cricket; on the right, plots of the three knuckle

markers used to measure finger spread at corresponding times.

See also Figure S2.
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in each of the three clusters illustrate the power grasp, with vari-

ation in the timing of grasp opening across the examples

(Figures 2G–2I). In the third case with the slowest speed, the
fingers have still not fully separated bymovement end (Figure 2I).

In contrast, rodents often use an arpeggio grasp to first contact

the object with fingers extended flatly, and then based on
Current Biology 33, 2557–2565, June 19, 2023 2559
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somatosensory feedback, close around it.33 Here, even the

slowest reaches appear to involve opening of the grasp near

contact (Figure 2E3) and thus are more consistent with

a vision-guided power grasp strategy typical of macaque

reaching.

Hand velocity converges to match lateral cricket
velocity during reaching
Movement dynamics during prey capture have been found to

follow control strategies for target interception, such as pure pur-

suit (PP) and proportional navigation (PN), across a range of spe-

cies, including dragonflies,10 hawks,34 and humans.35 In PP, the

rotational acceleration, or steering, of the body (or hand) is

dictated by the instantaneous offset from the target location,

called the range vector (RV). PP seeks to close the distance of

the RV but ignores motion of the target and is not anticipatory

of its future location. By contrast, PN aims to maintain a constant

bearing angle of the RV as the pursuer closes the distance. One

way to visualize the distinction between these strategies is to

decompose velocity into a component that lies along the RV at

each movement, the direct axis, and another component that

lies on its orthogonal projection, the lateral axis. Both strategies

predict changes in velocity related to closing distance on the

direct axis, but in addition, PN predicts amatching of the velocity

of the body (or hand) with the lateral velocity of the target tomain-

tain a constant bearing angle. Another feature characteristic of

PN is that the derivative of the RV over time will be negatively

correlated at �1 with the RV itself.10

We examined the direct and lateral components of hand ve-

locity as marmosets performed reaches to moving crickets in

the arena (Figure 3). Although we are able to reconstruct the

full 3D kinematics of reaching movements (Figure 3A), we focus

our subsequent analyses on the horizontal plane seen from

the top camera view, which captured most of the cricket

motion. To examine the influence of cricket velocity on hand ve-

locity, we decomposed velocity of the hand (H) and cricket

(C) into direct and lateral components relative to the RV that

connects the instantaneous position of the two (Figure 3B). In

the set of reaches, most of the hand motion falls along the

direct axis, Dh, which is necessary to traverse the arena to

close on the cricket and exhibits a peaked shape typical of

ballistic reaching movements (Figure 3C, dashed lines).

Conversely, most of cricket motion falls along the lateral axis,

Lc, due to the tendency of crickets to crawl along the perimeter

of the reaching arena. The lateral component of absolute

hand velocity, Lh, was closely matched in magnitude to cricket

lateral velocity, Lc (Figure 3C, solid lines). We thus sought to

determine to what extent the lateral hand velocity might match

cricket velocity, both in sign and magnitude over the reach, as

predicted during PN.

A typical reaching trial demonstrates that hand velocity tracks

the lateral motion of the cricket target in a manner more consis-

tent with a PN strategy for interception (Figures 3D–3F). In this

trial, the cricketmoves in the horizontal plane along the boundary

of the arena and the hand adopts a curved trajectory in pursuit

(Figure 3D). We applied computational methods from a previous

study of hawk prey pursuit34 to simulate the hand’s trajectory us-

ing either a PP or PN steering model. For this trial, the PN model

provides a closer match to the actual hand trajectory (R2 = 0.99)
2560 Current Biology 33, 2557–2565, June 19, 2023
compared with the PP model (R2 = 0.94) (Figure 3E). In line with

the better fit of the PN model, the correlation of the RVs to their

derivatives over time for this example trial takes on values near

�1, especially near the end of the reach as the hand converges

upon the target. In PP, the lateral velocity is not necessarily

matched, leading to overall weaker negative correlations. We

find that the correlation increasingly converges toward �1 up

to interception in this reach (Figure 3F).

When steering strategies are examined over the set of reaches

for moving crickets, the PN model better explains the hand

kinematics than the PP model. We applied PN and PP model

simulations to the population of reaches and compared the RV

correlations of the models against the actual movements. We

find that the mean correlation coefficient converges toward �1

over the duration of reaches, as in the previous example trial,

and that the correlation trace of the PN steering model better

matches that of the hand than the PP model, especially as the

hand nears interception (Figure 3G). To examine if the lateral ve-

locity of the cricket was matched by hand velocity, we examined

the mean of the lateral velocity of the hand multiplied by the sign

of instantaneous cricket velocity, such that correspondence

would give similar mean velocity and no correlation in direction

would converge toward zero. This process was repeated for

the lateral velocity components of PP and PN simulations. The

mean lateral velocity of the hand, Lh, increasingly matches that

of the cricket, Lc, over the time-course of reaches, which is

very closely approximated by the PN model, but not the PP

model (Figure 3H). Together these results provide evidence to

support a PN strategy of hand guidance. However, a weakness

of any of these steering models stems from their ability to

compensate for visual processing delays, which represent a crit-

ical feature of any real biological or engineered system. Indeed,

when we incorporate a visual delay of cricket position into the PP

and PN models we find the goodness of fit for simulated kine-

matics break down progressively with visuo-motor delay (Fig-

ure 3I). A previous study found that a mixed pursuit strategy,

including an additive combination of PP and PN guidance com-

mands, was more robust than single strategy models.34 Howev-

er, even when implementing a mixed PP + PN strategy here, we

find that performance matching the hand kinematics breaks

down progressively with delay. Therefore, we sought to deter-

mine visuo-motor delay in marmoset reaching for this task and,

furthermore, to test if an explicitly predictive control strategy

would be able to better explain observed reach kinematics while

using realistic delay values.

Hand velocity incorporates target predictions to
compensate for visuo-motor delays
A key problem in guiding the hand during pursuit is that positional

and velocity information about the target arrives at a processing

delay in the visual system before it can influence actions. Motor

control theories often assume predictive models that estimate

future body and target positions to compensate for such delays

in planning movements.12,36 In human experiments using dou-

ble-step reaching tasks, in which an initial target turns off and

a new illuminated target turns on mid-reach, there are visuo-mo-

tor delays ranging from 125 to 225 ms.37–40 By contrast, studies

with head-restrained macaques performing double-step tasks

have found substantially longer motor delays around 200–



Figure 3. Hand velocity during reaching is consistent with proportional navigation

(A) Representative 3D reconstructions of the population of reaches for moving crickets.

(B) At any moment, the hand and cricket velocity can be broken down into two components, the direct and lateral velocity. Direct velocity is the component

projected along the range vector, whereas lateral is the orthogonal projection.

(C) The average absolute cricket and hand velocity for the direct and lateral components as illustrated in (B) over interpolated time for the population of reaches.

The dashed box indicates the period in which the cricket was visible. All error fields are ±1 SEM.

(D) Path of the hand (blue) and cricket (red) in an individual example reaching trial. Lighter points indicate the beginning of the reach. Gray lines indicate line of

sight, or range vectors, for corresponding hand and cricket points, 1:4 downsampled.

(E) A pure pursuit (PP) steering strategy aligns hand velocity with the range vector. Proportional navigation (PN) rotates hand velocity to mirror range vector

rotations. Overlaid simulations of PP and PN show that PN best approximates this reach.

(F) PN strategies predict matching the lateral component of the hand and cricket velocity while the range to the target is close, and if followed, the derivative of the

range vector during pursuit should be in opposite direction of the range vector. For the example reach, the range vectors are shown in gray (matching gray lines in

D) and their derivatives in black, with the correlation between vectors over time quantified below (black). The trace is aligned on the right to the moment of

interception.

(G) The correlations between the range vectors and their derivatives converge toward �1 on average across the population of 78 reaches (individual reaches

shown as gray lines, average in black, ±1 SEM in gray shade). This analysis was also performed for PP and PN simulations, showing that PN is a better match to

actual data.

(H) Lateral velocities from the hand and pursuit simulations were made positive when traveling in the same direction as cricket velocity. Hand lateral velocity

increasingly approaches cricket lateral velocity throughout the reach. This is better matched by a PN simulation than a PP simulation. All error fields are ±1 SEM

(I) Pursuit strategy simulations perform worse when a delay is introduced. We include a mixed model simulation, which uses a combination of PN and PP to steer

hand velocity and is moderately more robust than proportional navigation alone. Goodness of fit quantified by R2 values that compare model simulations with

actual hand data. All error fields are ±1 SEM.
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300 ms.4,14–17 This slower timing may reflect constraints due to

head-restraint and the artificial nature of the tasks. Thus, it was

critical to first assess the visuo-motor delays in the current task.

Visuo-motor delays in dynamic reaching for cricket prey

were much shorter than those found in previous non-human
primate studies, ranging between 80 and 100 ms. To estimate

visuo-motor delay, we identified discrete cricket acceleration

events across task trials in which the cricket increased its mo-

tion while the reach was ongoing. The lateral speed of the

cricket was filtered to flag the top 5% of moments where
Current Biology 33, 2557–2565, June 19, 2023 2561



Figure 4. Cricket velocity predictively guides

hand velocity to compensate for visuo-motor

delay

(A) Increases in the lateral cricket velocity are fol-

lowed by increases in lateral hand velocity at a la-

tency of roughly 80 ms. A Difference of Gaussian

filter was applied to the absolute velocity of cricket

motion to identify discrete acceleration events

(n = 68). The average cricket velocity (in red) time-

locked to those events reflects increases in speed at

time zero, as expected, whereas hand velocity fol-

lows with a comparable acceleration at a delay

(blue), shown as ±1 SEM.

(B) A linear regression of lateral hand velocity with

the offset lateral cricket velocity from delays ranging

from�25 to 150 ms reveals a significant regression

coefficient between 80 and 100ms. Error shown in 1

SEM estimated from a jackknife procedure.

(C) The multivariate linear model equation used to

test the influence of visuo-motor delay td and pre-

diction time constant tp on the fit of hand velocity.

(D) The model estimates the hand velocity at the

next time step (t + 1) basedon the range vector (R) at

time t � td and momentum from the previous hand

velocity. A predictive term based on cricket velocity

(C) at time t � td (teal dashed lines) is multiplied by

the prediction term tp to project the range vector

into its estimated future location (teal dashed lines).

The gray field represents the range of tested pre-

diction tp values.

(E) The goodness of fit as a function of td and tp is

shown in color scale. Upon setting td to 80 ms, the

best fit of this model is achieved using a tp prediction = 115 ms (indicated by intersection of black dashed lines). Color scale indicates the goodness-of-fit surface

measured by a difference of AIC values between the full predictivemodel (equation as inC) and amodel that only uses hand velocity (momentum term) as a predictor.

Left: the goodness of fit with visuo-motor delay td fixed at 80 ms and varying the prediction time constant tp is shown with 1 SEM estimated from a jackknife

procedure.

(F) When this predictive pursuit model is applied in an approach to simulate hand trajectories (as in Figure 3), it provides a better fit (teal curve) that degrades more

gradually than the best mixed PP + PN steering models (orange curve, left vertical axis). Colored traces indicate mean R2 of simulation fits with 1 SEM fields. The

model improvement for the predictive vs. best steering model (black curve, right vertical axis) at 80 ms delay and beyond is significantly better for the predictive

models (sign rank test, p = 0.0105).
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lateral velocity increased. We observed that immediately

following an increase in lateral cricket velocity, there is a cor-

responding increase in lateral hand velocity in the same direc-

tion that begins around 80 ms (Figure 4A). This analysis, how-

ever, relies on discrete events in the total dataset. To

determine if it was consistent throughout the entire dataset,

we applied a simple linear regression on all the velocity data

to predict lateral hand velocity based on the recent history

of cricket lateral velocity (STAR Methods; Equation 4). This

enabled us to fit a linear kernel for hand velocity based on

cricket velocity (i.e., the impulse response function corrected

for autocorrelations in cricket velocity). Consistent with the vi-

suo-motor delay observed due to sudden jumps, the linear

prediction found a significant prediction coefficient near

80 ms (p < 0.0001 at 87.5 ms and p = 0.0559 at 100 ms),

but not at other delays (Figure 4B). This suggests that

changes in hand velocity track the cricket velocity at relatively

short delays around 80–100 ms, a value much faster than the

200–300 ms reported in constrained tasks.14–17 However, this

value is within range of the delay seen in ocular following re-

sponses in marmosets, which is close to 75 ms.18 Of interest,

similar to the reaches for live crickets, studies of oculomotor

pursuit employ fixation targets that are moving continuously,
2562 Current Biology 33, 2557–2565, June 19, 2023
whereas the double-step reaching studies in macaques

used instantaneous jumps in target positions.

Although the visuo-motor delays are briefer in the current task

than previous studies, there may still be significant advantages

for taking them into account by planning predictive movements

that incorporate the cricket’s velocity. To test the role of predic-

tion in guiding the hand, we fit an auto-regressive model of hand

velocity that included terms for the visuo-motor delay, td, as well

as a prediction time constant, tp, that dictated how far into the

future the cricket’s position was projected based on its velocity.

We followed a generative model formulation from a previous

study inmacaques,41 which described the hand velocity in terms

of a momentum term plus a scaled version of a RV, R(t � td), at

some visuo-motor delay (see equation; Figure 4C). To compen-

sate for delays in the RV (cyan dashed line, Figure 4D) the

model includes a term to estimate the cricket’s future position,

tp C(t � td), where tp is a linear temporal weight that determines

how far in the future to adjust for the cricket’s future position

(dark gray dashed line, Figure 4D). We pooled data from 78 rea-

ches for moving crickets and tested the predictive model fit for

visuo-motor delays td over a range from 0 to 145 ms in the

past and prediction time constant tp over a range from 250 ms

in the past up to 250 ms in the future. We assessed model fit
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by the difference of Akaike information criterion (AIC)42 values for

the full model (including cricket velocity prediction) against a

baseline model that only contains information about hand veloc-

ity (momentum term).

Auto-regressive modeling indicates that hand velocity is best

explained by a model in which visuo-motor delay is compen-

sated for by using predictions based on cricket velocity. The

AIC difference, or goodness of fit, between the full predictive

model and the hand velocity model based on momentum

showed the best fit with a positively correlated diagonal struc-

ture, reflecting that positive temporal prediction constants

were matched to compensate for visuo-motor delays (yellow

band in Figure 4E). When we set delay to 80 ms as determined

above (Figures 4A and 4B), the best fit is achieved using a predic-

tion constant of 115 ms into the future, (vertical dashed line, Fig-

ure 4E). To visualize standard error in these surface estimates,

the cross-section at that 80ms visuo-motor delay was examined

as a function of the temporal prediction parameter, with its

confidence intervals estimated using a jackknife procedure (left

panel, Figure 4E). The prediction model demonstrated a signifi-

cant improvement in model performance for temporal constants

weighted into the future. To obtain a more direct comparison of

this model against the PP, PN, and PP + PN mixed steering

models (Figure 3I), we tested this prediction model using a simu-

lation approach directly comparable to earlier analyses fitting

hand kinematics, and we tested a range of visuo-motor delays.

When compared against the best steering model, the PP + PN

mixed strategy, the predictive model outperformed it at each

delay, showing a more gradual breakdown in performance for

longer visuo-motor delays (Figure 4F, cyan versus orange

curves). Taking the difference in performance between models,

the full predictive pursuit model significantly outperformed the

mixed PP + PN steering model at 80 ms (sign rank test, p =

0.0105) and longer delays (Figure 4F, black trace). These findings

support that a predictive term compensating for visuo-motor

delay provides a better description of reaching kinematics at

realistic delays. Furthermore, although steering models such

as PN successfully describe marmoset reaching for moving

crickets when they are formulated with no processing delays

(Figure 3), they lack the ability to do so given systematic delays

characteristic of the real system.

DISCUSSION

The present findings demonstrate that, during an ecologically

motivated reaching paradigm for moving crickets, marmoset

monkeys utilize a power grasp that opens earlier in the reach

for faster velocity reaches. Furthermore, marmosets guide their

hand movements at very brief visuo-motor delays, comparable

to oculomotor pursuit. In an examination of hand guidance steer-

ing models, we find that PN explains hand motion reasonably

well and provides better fits than a PPmodel (Figure 3). However,

these models perform worse in the presence of realistic visuo-

motor delays. To explain the reach kinematics given a realistic

visuo-motor delay, which we estimate to be around 80 ms, we

find that it is necessary to use a predictive pursuit model that in-

corporates a term to extrapolate the future location of the target

based on cricket velocity. This predictive pursuit model outper-

forms the PN or mixed strategy model34 at the estimated delay.
We find that the prediction constant closely matches the scale of

the visuo-motor delay, extending slightly beyond it about 35 ms

into the future. Such a prediction constant, which remains close

to or slightly beyond the visuo-motor delay, is often close to

optimal for maintaining stability and achieving optimal solutions

in Bayesian integration43 or Smith prediction.44

The current finding emphasizes that moving toward realistic

dynamics in experimental designs can45 better inform our under-

standing of reaching behavior and provide insights into the un-

derlying neural correlates and the evolutionary contexts that

have driven their development. A previous study also found

that primates use prediction in a pursuit task involving a simu-

lated evading virtual target that was captured by a screen cursor

under joystick control.41 In our study we have adapted their

approach to modeling prediction, but have done so within a

task in which reaching movements unfold at natural timescales.

The former study identified predictive terms beyond 500 ms into

the future, which match the delays imposed by using a joystick

for control in their task. Here, we find that similar predictive

strategies are involved to compensate delays when reaching

for live prey, but that they occur at much shorter latencies where

visuo-motor delays are comparable to oculomotor pursuit and

under 100 ms. Although the present findings were sufficient to

characterize the visuo-motor strategies in the current reaching

task, future studies could leverage recent advances in head

mounted eye tracking45,46 to characterize coordination between

head and eye gaze in guiding predictive reaching.

Visually guided insect predation and fruit/leaf eating in an

arboreal environment are hypothesized to play a role in the evo-

lution of primates.47,48 Although not ubiquitous, insect hunting is

not only observed in New World monkeys, such as marmosets,

but also in Old World monkeys and hominoids.49,50 Fronto-pari-

etal neural circuits for motor control in primates are thought to

have evolved in primates to optimize visuo-motor strategies for

coordination and speed of reach-to-grasp movements.51 Much

evidence suggest that motor commands are sent via feedback

pathways from premotor cortex to higher order sensory areas

in parietal cortex and could mediate the forward models neces-

sary to implement predictive on-line control.36,52 The current

experimental paradigm shows that predictive strategies in

reaching emerge naturally, even within a laboratory context for

dynamic targets, such as crickets, affording new opportunities

to study the underlying neural mechanisms within an ethologi-

cally motivated paradigm.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures described here are approved by the University Committee on Animal Resources at University of Roches-

ter. 10 commonmarmoset monkeys (Callithrix jacchus: 5 females, 5males) were recorded bymultiple cameras while reaching for live

crickets (Acheta domesticus) and cheerios. Their ages ranged from 1.2 years old to 7.1 years old. The crickets used in experiments

served as additional enrichment to their daily diet.

METHOD DETAILS

Reaching task and video recording
Reaching experiments were conducted by docking amobile video recording platform tomarmoset family cages within themarmoset

colony and recording reaches using 3 GoPro Hero 7 Black cameras (Figure 1B). Marmosets were acclimated to the experimental

apparatus and allowed to become comfortable reaching for cheerios as food treats, and then also for crickets. Acclimation was typi-

cally less than 30 minutes and was necessary only on the first day of experiments. To calibrate cameras prior to reaching experi-

ments, we recorded a brief video of an 8x6 checkerboard array that was moved and rotated continuously within the reach arena

(Figures 1B and 1D). Frames of this video were extracted and fed into triangulation algorithms provided in the Anipose toolkit.25 A

manually triggered photography flash aimed at the cameras was used to deliver a synchronization signal to all three cameras.

This created 1-2 frames of video that were significantly over-exposed and easily identified using custom Matlab (Mathworks) and

ffmpeg (Ffmpeg Developers) scripts.

Up to 15 cricket reaches were recorded from an individual marmoset on a given recording day. A sliding plate at the entry of the

reaching enclosure was closed to isolate individual marmosets briefly from their family groups on the test platform. Reaching trials

began by sliding an opaque acrylic plate upwards that occluded the view of the reaching platform, thus allowing themarmoset to view

the target and begin hunting. The marmoset was able to reach through a large rectangular aperture (9cm x 13.5cm) that contained

two laterally traversing 2mm stainless-steel bars at 3cm and 6cm height and was built into an acrylic plate. This aperture allowed for a
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wide range of reach start points while also preventing the animal from getting outside the test chamber (Figure 1B). Before lifting the

clear acrylic sheet to allow reaching to begin, the crickets were dropped onto the platform and allowed to move freely. Crickets were

kept from crawling off the platform with a 4cm tall acrylic wall molded into an arc and cemented to the platform with a center

maximum y-dimension of 9cm and base maximum x-dimension of 20cm. The platform was sanded to eliminate reflections and

increase hand and target contrast. Reflection reduction was useful due to the competition of the features of a tracked subject’s

reflection against the features of the subject itself.

Our video recordings were optimized to capture high velocity ballistic reaches. The GoPro Hero 7 Black was specifically chosen for

its high-speed capture capability andmanual control of recording settings. High frame rate (1/240s) and high shutter speeds (1/960s)

were sufficient to render all hand features in full detail without observable motion blur. To attain proper exposure at this high shutter

speed and to avoid shining a bright light directly into the eyes of our subjects, a LED light source (Nanlite Forza 60), was positioned to

project light at a 65-degree angle 45cm from the reaching platform (Figure 1B). Light intensity at the platform was measured to be

4.6E5 Lux, comparable to direct sun on a bright day. The cameras were arranged around the reaching arena to provide a view

from above and a downward angled view from the right and left (Figures 1E–1G). The cameras were fixed in position using articulating

camera brackets mounted to an aluminum breadboard.

Video preparation and DeepLabCut pose estimation
Videos were preprocessed by the experimenter to indicate which video frames contained reaches for crickets and to provide meta-

data for each reach. Reach success, handedness, and whether reaches were composed of a single volley or multiple volleys were

documented for each reach in the data workflow. We defined volley multiplicity by whether the hand returned fully to the reach aper-

ture opening on the platform before extending again. Selected frames spanned from �200ms prior to the hand moving through the

reaching aperture to full retraction of the arm, which was typically accompanied by delivery of the target to the mouth. These data

were used to generate standalone video files for each reach that were synchronized for all camera views. Adobe Premiere Pro was

used for video viewing and scoring. Videos were cropped to 760x720 pixels to remove pixel areas with irrelevant information.

DeepLabCut 2.1.8.2 performed feature tracking from the reaching videos.

DeepLabCut labeling utilized amarker set that was chosen to track the position of fingers, hands, cricket, and features of the reach-

ing platform. We trained the pre-trained ResNet50 network supplied by DeepLabCut using 574 manually labeled, manually selected

frames of video. The set of frames was selected to fully characterize the diversity of marmosets, camera angles, hand positions, and

targets of our reaching video data. The final model was trained for 800k iterations and used the imgaug augmentation pack. Deep-

labcut was deployed through Anipose, which generated unfiltered 2D tracking files using DeepLabCut algorithms. In some later re-

cordings, an unexpected minor shift in the top-view camera position (Figure 1F) offset the accuracy of the original triangulation cali-

bration. To correct for this, we re-aligned the 2D DeepLabCut tracking data from each reach video segment using a linear

transformation matrix generated by comparing the arena feature markers (Figure 1D) taken from the original calibration videos to

the arena feature markers of each reaching video. We measured the distance each point was moved to confirm that transformation

did not introduce unintended scaling artifacts. These steps were performed using custom Matlab scripts after converting tracking

data files to .csv files. All tracked points were transformed accordingly, re-packaged into .hd5 files using custom Python scripts,

and then triangulated into 3D space using Anipose.

QUANTIFICATION AND STATISTICAL ANALYSIS

Reaching Kinematic Data Preparation
Manual reach scoring provided metadata for each reach, which guided the identification of video segments with hand extension and

target motion position data. Position estimates with less than a .7 estimation likelihood were excluded from analyses, which is a

metric provided by DeepLabCut indicating label accuracy probability. Hand and cricket tracking points were filtered using a 5 sample

Gaussian smoothing window. We applied a 180-degree rotation of right-handed reaches and the cricket position about the reach

platform midline to reduce any potential effects of any handedness-related directionality biases.

We defined a reach as the first tracked appearance of the central hand point beyond the reach aperture plane to the last tracked

point of the cricket. Cricket tracking at the very end of reaches, during deacceleration and grasp, was typically lost due to occlusion

by the fingers or hand. Windows of reaching data were defined by viewing videos with overlayed tracked points and marking the

beginning and end frame number. These frame number values were used to refer directly to the .csv tracking data files in custom

Matlab analysis scripts. Reaches for crickets that moved greater than a 0.5 cm distance during the reach and moved continuously

were included in analyses. Crickets that moved this distance by a jump or that ceased motion during the reach were not included in

the data set, nor were crickets that moved less than 0.5cm in total.

Grasp cluster analyses
Reaches were selected by visualizing all the tracked points of each of the 78 selected reaches with moving crickets and excluding 14

reaches with poor knuckle and finger tracking. Each reach was interpolated to a 51-sample vector where each point is equal to the

mean distance between the pointer and middle knuckle and middle and ring knuckle markers. Knuckle markers were chosen

because they were better tracked and less subject to perturbation by the cricket retaining wall. Each finger separation vector was

z scored and the population was subjected to a kmeans cluster analysis. The maximum number of clusters was set manually based
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on testing 2-6 clusters. We repeated clustering using different initial centroids 10 times. The results of this process were nearly iden-

tical to a hierarchical wavelet-based clustering process performed using the mdwtcluster function provided by Matlab.

Pursuit models and velocity decomposition
To investigate the degree to which marmoset reaching adheres to steering guidance laws such as pure pursuit and proportional nav-

igation, we adopted Matlab analysis scripts used to investigate hawk pursuit of moving targets.34 These scripts provided the frame-

work to simulate marmoset reaches by applying the sample-by-sample steering commands while matching the magnitude of each

step to themeasured actual hand speed. Simulation fits to tracked hand data weremeasured using the R-squared between the simu-

lated and actual hand velocity across each reach, then pooled across all reaches. To set initial conditions for simulated reaches, we

matched simulated hand velocity in the first 75ms of the reach to themean of the actual hand velocity averaged over the same period.

Following Brighton and Taylor,34 the proportional navigation guidance law utilized by these scripts is defined as

_gðtÞpn = Nllll (Equation 1)

Where _gðtÞpn is turning rate, N is an experimentally derived gain constant, _lðtÞ is the line of sight rate, t is time, and t is a delay param-

eter. Proportional pursuit is defined as

_gðtÞpp = � Kdðt � tÞ (Equation 2)

Where _gðtÞpp is turning rate, K is an experimentally derived gain constant, d is the range vector angle with respect to the hand’s

velocity, t is time, and t is a delay parameter. A mixed strategy is defined as the sum of the two above terms as follows:

_gðtÞpnp = _gðtÞpn + _gðtÞpp (Equation 3)

Model parameters for gain were set bymaximizing the total R-squared for hand velocity againstmodel hand velocity. All reach trials

(N=78) were included to fit a gain parameter that was fixed across trials. Confidence intervals on the R-squared performance were

computed from the standard deviation of trial-by-trial R-squared performance.

Proportional navigation strategies yield parallel pursuit, which can be described asmatching velocity orthogonal to the line of sight,

or range vector. To investigate the behavior of range-vector-relative decomposed velocities in the above steeringmodel frameworks,

target and hand velocity vectors were decomposed into orthogonal velocity components relative to a range vector, which connects

hand position to cricket position. We refer to the velocity component parallel to the range vector as direct velocity. We refer to the

velocity component orthogonal to the range vector as lateral velocity. This distinction is important due to the typical movement of

crickets along the perimeter of the reaching platform.When cricket velocity is decomposed in this way, themajority of cricket velocity

is contained within the lateral velocity component. A summary of this decomposition is provided in Figure 3D.

A proportional navigation analysis was conducted according to methods used in dragonfly pursuit.10 Range vectors were calcu-

lated as a subtraction of hand position from cricket position. The time derivative of the series of range vectors was calculated and

correlated with the range vector itself using cosine vector correlation. Proportional navigation predicts a negative correlation of -1

between the range vector and its derivative.

Predictive modeling and reaching analyses
We examined if sudden increases in cricket velocity during reaching led to corresponding increases in hand velocity. To identify in-

creases in cricket velocity we filtered the lateral speed of the cricket (absolute value of lateral velocity) using a difference filter that was

defined by a Gaussian kernel (s = 20ms) with negative amplitude at negative lags and positive amplitude as positive lags. This filter

produces the largest values for epochs where low speed is directly followed by an increase in speed, regardless of whether speed

increase is due to the cricketmoving to the left or right.We used a threshold to flag the top 5%of the filtered values and identify peaks,

ensuring that no two peaks occurred within 100 ms of each other. From 78 total reach trials we flagged 68 events. We averaged the

lateral cricket velocity and hand velocity traces from -100 to 150ms time-locked around these events (Figure 4A). Results were similar

if we relaxed our acceleration threshold to include the top 10% or 20% of events (not shown).

Decomposed hand and cricket velocity components were used to investigate the predictive influence of cricket velocity on hand

velocity. We first tested a linear prediction in which the lateral hand velocity was predicted by a weighted linear sum of the lateral

cricket velocity history. The linear predictor equations was defined as

HðtÞ = St ktCðt� tÞ + εðtÞ (Equation 4)

where H(t) represents lateral hand velocity at time t, C is the lateral cricket velocity at time t minus time delay t and kt is a linear pre-

diction coefficient at this time delay. To reduce the number of parameters we down-sampled the velocity traces from 240 to 80 hertz,

giving 12.5ms steps.We tested a range of t values from -25 to 150ms.We defined the range vector used to separate direct and lateral

velocities as the vector from the hand to cricket at the start of the reach (when the hand first entered the arena). We considered the

case of updating the range vector at each delay during the reach as in the full auto-regressive model discussed below and settled

upon this approach for the sake of simplicity.

A recent study examined a pursuit strategy embedded in a 2D coordinate system with a term incorporating prey velocity to test for

the role of prediction.41 To apply the same model, we employed an auto-regressive linear regression to fit parameters in Equation 5
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shown below which includes a momentum term for hand velocity, and a term based on the predicted range vector. The parameters

for visuo-motor delay, td, and a prediction time constant, tp, were fit to optimize the match to actual hand velocity. This analysis was

evaluated using the Matlab mvregress function. Concatenated velocity and range vector magnitude values from each reach were

supplied to the regression function. Time is defined by frames of video, each of which captures 1/240 second, or 4.2ms of behavior.

Hðt+1Þ = aHðtÞ + b
�
Rðt� tdÞ + tpCðt� tdÞ

�
+ εðtÞ (Equation 5)

In the above Equation 5, H(t+1) represents hand velocity one frame of video into the future (t+1) relative to the current H(t) velocity at

time t. The velocity of the cricket C at a delayed time, t- td, is multiplied by the prediction time constant, tp, to project cricket position

into the future or past. We also include a variable representing the range vector from hand to the cricket position as R. This vector

connects hand position at time t and cricket position at t- td. The sequence of operations to generate these variables was to first

temporally offset tracked cricket position values according to t- td. Velocities and range vectors were calculated. Finally cricket

velocities were multiplied by tp. The predictor variables are weighted by a set of coefficients a and b, respectively. All terms in

this equation are composed of cartesian x and y constituents and thus are bivariate. These data were submitted to a least-square

regression where ε(t) represents the residual error.

We varied the values of tp and td to determine the effects of visuomotor delay and prediction on model fit. The parameter td was

varied from 0 to 35 frames of video (equivalent to 0ms to 146ms) such that time shifted cricket position values were aligned to present

hand values. Velocities and range vectorswere calculated after this offset was applied. Following this wemultiplied cricket velocity by

a range of tp values ranging from -60 to 60 frames of video (-250ms to 250ms). To quantitatively assess the influence of cricket ve-

locity on model fit and to subsequently find offsets with significant cricket velocity influence, we compared the Akaike Information

Criterion (AIC)42 of the model described in Eq5 to analogous models that exclude the range vector and cricket velocity predictor

terms R and C. This was performed for each tp and td in the above range. When the AIC value of one model is more negative

than another, it can be interpreted to have a better fit. More negative AIC values in the cricket inclusion models would suggest

that prediction based on cricket velocity is a significant contributing factor to reach kinematics. We plotted the AIC difference values

and used a jackknife approach (leaving�8 of 78 reaches out for 10 jackknife iterations) to estimate jackknife AIC mean and calculate

standard error.

To compare the predictive pursuit model against steering models we applied the simulation approach discussed above in

Equations 1, 2, and 3 and compared its R squared performance for matching hand velocity against those models. All features of

the simulated reaches were applied as before for the steering models with the guidance law described by Equation 6 as

Apred = bðRðt � tdÞ + tp Cðt � tdÞÞ (Equation 6)

where Apred is acceleration applied to hand velocity, b is an experimentally derived gain constant, R(t- td) is the range vector and

C(t- td) is the cricket velocity, both at delay td, and tp is the prediction time constant. All 78 trials were included to maximize the total

R-squared fit across trials in fitting b and tp parameters for each tested visuo-motor delay td. Confidence intervals on the R-squared

performance were computed from the standard deviation of trial-by-trial R-squared values with statistical tests comparing trial

R-squared between models (Sign Rank tests).
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Figure S1. Tracking accuracy in DeepLabCut video analysis, related to Figure 1: Three DeepLabCut networks 

were trained to show tracking errors from the testing and training sets in RMSE quantified in pixels and converted to 

mm using the pixel to mm conversion respective to the above-view camera (Figure 1F). The label ‘stage’ on the x-

axis refers to the reach platform stage and corresponding arena points (Figure 1D). Fingers refers to the average of 

both the fingertip and knuckle points, which equals 10 points for each hand. The average RMSE values depict the 

stability of the training approach over 3 different training iterations. Each point depicts the labeling error of a model 

trained with a different “shuffle” of the test and training data. The model used for all tracking analyses performed with 

a testing RMSE of 2.79 pixels for the stage and arena markers, 3.28px for the cricket marker, 8.21px for the left hand, 

5.1px for the left fingertips, 5.9px for the left knuckles, 6.2px for the right hand, 5.8px for the right fingertips, and 5.0px 

for the right knuckles. For comparison, the width of the wrist is typically around ~1.5cm, which equates to 37px. The 

length of the cricket ranged from ~1.25cm to ~3cm. We utilize the hand marker for reach modeling and correlation 

analyses because of its tracking reliability across all three camera views and its reduced susceptibility to occlusion-

related tracking drops, which were more common in the finger marker. 

 



 

 

Figure S2. Further grasp characterization in relation to hand speed and distance, related to Figure 2. A: Grasp 

visualization from a low camera angle to show parallel hand orientation and simultaneous finger closure. B-D: Scatter 

plots illustrate the relationships between distance to target, hand speed, and finger separation across reaching 

movements. Points show a 1/4 subsample of all tracked points from the population of reaches. Each plot is fit with a 

line (B,C) or 2nd order polynomial (D), which is shown with a 95% confidence interval. B: Across many reaches the 

finger separation increases with proximity to target. C: Finger separation increases with decreased hand speed. D: 

Hand speeds are lower when at greater distances from target and when in close proximity to the target.  
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